Application of the Sleeping Beauty system in Saanen goat fibroblast cells for establishing persistent transgene expression.

نویسندگان

  • B C Jiang
  • H A Kaleri
  • H X Zhang
  • J Chen
  • H L Liu
چکیده

The Sleeping Beauty (SB) transposon system is a promising new method for establishing persistent transgene expression in vivo. We applied the SB system for enhancing transgenesis in Saanen dairy goat fibroblast cells. We constructed a pKT2/CMV-EGFP-IRES-PURO vector and investigated the influence of transposon and transposase vector ratios on transfection efficiency in the Saanen goat fibroblast cells. To enhance the SB system performance, we developed a new transfection technique (double-transfection method) for the SB system. The cultured cells were transfected with transposase and transposon vectors successively, with a 42-h interval. Consequently, the transposase and DNA donor (transposon vector) can interact, both at the highest level. Compared with the traditional transfection method, this new double-transfection method approximately doubled integration efficiency.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hyperactive sleeping beauty transposase enables persistent phenotypic correction in mice and a canine model for hemophilia B.

Sleeping Beauty (SB) transposase enables somatic integration of exogenous DNA in mammalian cells, but potency as a gene transfer vector especially in large mammals has been lacking. Herein, we show that hyperactive transposase system delivered by high-capacity adenoviral vectors (HC-AdVs) can result in somatic integration of a canine factor IX (cFIX) expression-cassette in canine liver, facilit...

متن کامل

Erythroid-Specific Expression of β-globin from Sleeping Beauty-Transduced Human Hematopoietic Progenitor Cells

Gene therapy for sickle cell disease will require efficient delivery of a tightly regulated and stably expressed gene product to provide an effective therapy. In this study we utilized the non-viral Sleeping Beauty (SB) transposon system using the SB100X hyperactive transposase to transduce human cord blood CD34(+) cells with DsRed and a hybrid IHK-β-globin transgene. IHK transduced cells were ...

متن کامل

RNA Interference Is Responsible for Reduction of Transgene Expression after Sleeping Beauty Transposase Mediated Somatic Integration

BACKGROUND Integrating non-viral vectors based on transposable elements are widely used for genetically engineering mammalian cells in functional genomics and therapeutic gene transfer. For the Sleeping Beauty (SB) transposase system it was demonstrated that convergent transcription driven by the SB transposase inverted repeats (IRs) in eukaryotic cells occurs after somatic integration. This co...

متن کامل

Postintegrative gene silencing within the Sleeping Beauty transposition system.

The Sleeping Beauty (SB) transposon represents an important vehicle for in vivo gene delivery because it can efficiently and stably integrate into mammalian genomes. In this report, we examined transposon expression in human cells using a novel nonselective fluorescence-activated cell sorter-based method and discovered that SB integrates approximately 20 times more frequently than previously re...

متن کامل

Germline Transgenic Pigs by Sleeping Beauty Transposition in Porcine Zygotes and Targeted Integration in the Pig Genome

Genetic engineering can expand the utility of pigs for modeling human diseases, and for developing advanced therapeutic approaches. However, the inefficient production of transgenic pigs represents a technological bottleneck. Here, we assessed the hyperactive Sleeping Beauty (SB100X) transposon system for enzyme-catalyzed transgene integration into the embryonic porcine genome. The components o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Genetics and molecular research : GMR

دوره 10 4  شماره 

صفحات  -

تاریخ انتشار 2011